Carbonyl Chemistry IV: Enolate Alkylations and Aldols

Section Agenda

- 1) No office hours Thursday
- 2) The Great Joe Young is covering section next Monday
- 3) Handout: Carbonyl Chemistry IV

Model for Asymmetric Alkylation

• This is relatively easy. Simply draw a 3D structure of the enolate and add the electrophile to the least hindered face of the double bond.

Use of oxazolidinone chiral auxiliaries:

To reverse the product ratios, use the chiral auxiliary with the opposite stereochemistry

Asymmetric Aldol Reactions

To draw the correct final product, assign *R* and *S* designations to the two stereocenters that are generated in the transition state, then add solid or dashed wedges to your Lewis structure to match these designations

Conjugate Additions

- These two additions pathways compete when a nucleophile reacts with an α , β -unsaturated substrate.
- As a general rule, most 1,2 additions are faster, but they are usually more reversible.
- "Michael" reactions are those in which an enolate adds in 1,4 fashion
- Beware of "tandem reactions" in which the enolate intermediate acts as a nucleophile

1,2 Additions	1,4 Additions
Hard nucleophiles	Soft Nucleophiles
not polarizable/high charge density	polarizable/low charge density
Lithium Aluminum Hydride (LAH)	RS ⁻ , ⁻ CN, enolates
Alkyllithium reagents (RLi)	Organocuprates (R ₂ CuLi)
	(<i>via</i> an organometallic mechanism)
Note that these are the nucleophiles we	
normally classify as irreversible	

Synthetic Transformations

malonic ester enolates $RO \xrightarrow{O^{-}}_{R'}OR \longrightarrow RO \xrightarrow{O}_{H}O$

Bases with pK_a >> 8 (NaH, RO⁻)

silyl enol ethers

OTBS ⇒

O TBSCI and a anhydrous s

0 [] TBSCI and an amine base in anhydrous solvent

enamines

+ HN PH = 5 catalyzed condensation

Aldol Additions

